Websitet anvender cookies og lokal lagring bl.a. for at huske dine indstillinger og til statistik.
Ved at bruge sitet accepterer du dette.   Læs mere

OK

Vil reducere brugen af sprøjtemidler

Af Maskinbladet - 22. dec. 2016 KL. 15:43

  • ww232927_1
  • ww232927_2

Projektet RoboWeedsMaPs vil skabe et system, som automatisk genkender ukrudt i marken gennem kunstig intelligens.

Innovationsfonden vil i alt investere 19 millioner kroner i projektet, kaldt RoboWeedsMaPs, som automatisk vil genkende ukrudt i marken gennem kunstig intelligens.

Bagpå en traktor er hægtet en sprøjte, som bærer et kamera. Den er i stand til at genkende ukrudtsplanter, når sprøjten kører hen over dem. På denne måde kan der målrettet bekæmpes specifikke ukrudtsarter.

Det er målet for projektet RoboWeedsMaPs, som hviler på den hidtidige forskning på Aarhus Universitet inden for optimering af ukrudtsbekæmpelse på markerne.

Projektdeltagerne ser et stort potentiale i at tage forskningen flere skridt videre gennem computervision, kunstig intelligens og anvendelse af big data.

Det overordnede formål for projektet er at opnå betydelige besparelser på ukrudtsmidler til gavn for samfund, miljø og landmand. Det er ambitionen, at det endelige produkt kan reducere det nuværende forbrug af sprøjtemidler med 75 procent på bedriften.

Flere områder

I projektet udvikles flere delprodukter, som kan anvendes både enkeltvist og integreret. Samlet set vil projektet bestå af kamerasystem til billedindsamling, billedanalysesystem baseret på kunstig intelligens, beslutningsalgoritmer til beregning af dosering, managementsystem til dokumentation og overblik og en injektionssprøjte til udførelse af behandlingen

Tilsammen vil kamera og de øvrige produkter udgøre ét samlet, let håndterbart og enkelt produkt til landmanden, som vil have stor effekt på driften og økonomien.

De generiske kvaliteter i alle produkter gør dem velegnede til eksport ved hjælp af allerede etablerede netværk i Europa.

Produktet vil bestå af både en software- og hardwaredel. Kernen i softwaredelen er at udvikle et system, som automatisk kan genkende det ukrudt og de ukrudtsarter, der registeres i marken.

Her sættes deep learning i spil, som betyder, at et neuralt netværk (kunstig intelligens) præsenteres for og lagrer en stor mængde data (big data). I dette tilfælde flere tusinde billeder af forskellige ukrudtsplanter. Derved trænes netværket til at forstå, hvad den skal kigge efter i data samt trænes til at genkende eller finde nye sammenhænge baseret på, hvad den har set.

- Kamerasystemet skal kunne genkende alle typer af ukrudt på alle mulige forskellige vækststadier. Så det er ganske meget, kameraet skal nå at genkende, mens landmanden kører på sin mark, fortæller Birger Hartmann, direktør i teknologivirksomheden Datalogisk.

Mere effektivt

Dette er langt mere effektivt end menneskeskabte informationer, da en computer kan rumme meget mere og finde sammenhæng i store mængder data.

- Det er ny forskning og innovation, som vi forventer os meget af, fortæller Rasmus Nyholm Jørgensen, seniorforsker på Institut for Ingeniørvidenskab under Aarhus Universitet, som er initiativtager til projektet, og fortsætter:

- I konsortiet kombineres ny og velkendt viden, og vi anser alle potentialet for en reducering af sprøjtemidler som værende enorm. Det vil uden tvivl være en milepæl for dansk landbrug.

- Det, vi byder ind med, er en onlineløsning, hvor landmanden i én arbejdsgang kun foretager den absolut nødvendige ukrudtssprøjtning og samtidig får sine ukrudtsarter og behandlinger vist på et kort. Noget der har været visionen og ønsket igennem mange år, men ikke i praksis har kunnet lade sig gøre på grund af mangel på data, supplerer Birger Hartmann.

Projekteret er et samarbejde mellem Aarhus Universitet, AgroIntelli, IPMConsult, Datalogisk, I?Gis og Danfoil.

Innovationsfondens investering er på 19,5 millioner kroner og det samlet budget ligger på 34,6 millioner kroner. Man forventer at projektet tager fire år og den officielle titel er RoboWeedMaPS ? Automated Weed detection, Mapping and Variable Precision Control of Weeds.

Partnerne

Aarhus Universitet danner det forsknings- og udviklingsmæssige grundlag for computer vision og deep learning. Eksempelvis skal der meget lys til, når en lille ukrudtsplante skal fotograferes. Hertil kommer populationsdynamik og indpasning i landmandspraksis.

AgroIntelli udvikler og markedsmodner kameraet samt omsætter deep leaning algoritmer til realtidsløsninger.

IPMConsult står for at udvikle beslutningsalgoritmen, som sikrer, at den enkelte art ukrudtsplante får den nødvendige mængde ukrudtsmiddel. Både i forhold til hvilket udviklingsstadie den enkelte ukrudtsplante er på, og hvor stor populationen er.

Datalogisk står for tekniske løsninger til at planlægge landmandens aktiviteter på marken. Samtidig kan virksomheden levere digitaliserede kort over, hvor på marken landmanden kan forvente at støde på forskellige arter af ukrudtsplanter baseret på tidligere års kameraoptagelser.

I?GIS står for at få beregninger, kunstig intelligens og datahåndtering til at arbejde sammen i produktet.

Få nyhederne først!Nyhedsbrev

Tilmeld dig vores nyhedsbrev og vær på forkant med dagens landbrug.

 

Læs maskinbladet på

Læs maskinbladet på desktop

Desktop

Læs maskinbladet på tablet og smartphone

Tablet & smartphone

Læs maskinbladet på nyhedsbrev

Nyhedsbrev

Læs maskinbladet på print og iPaper

Print og iPaper

reklame